Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(13): e202316133, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279624

RESUMO

Biocatalytic oxidations are an emerging technology for selective C-H bond activation. While promising for a range of selective oxidations, practical use of enzymes catalyzing aerobic hydroxylation is presently limited by their substrate scope and stability under industrially relevant conditions. Here, we report the engineering and practical application of a non-heme iron and α-ketoglutarate-dependent dioxygenase for the direct stereo- and regio-selective hydroxylation of a non-native fluoroindanone en route to the oncology treatment belzutifan, replacing a five-step chemical synthesis with a direct enantioselective hydroxylation. Mechanistic studies indicated that formation of the desired product was limited by enzyme stability and product overoxidation, with these properties subsequently improved by directed evolution, yielding a biocatalyst capable of >15,000 total turnovers. Highlighting the industrial utility of this biocatalyst, the high-yielding, green, and efficient oxidation was demonstrated at kilogram scale for the synthesis of belzutifan.


Assuntos
Indenos , Oxigenases de Função Mista , Oxirredução , Hidroxilação , Biocatálise
2.
Chemistry ; 29(56): e202301813, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452377

RESUMO

Cyclic peptides have been excellent source of drug leads. With the advances in discovery platforms, the pharmaceutical industry has a growing interest in cyclic peptides and has pushed several into clinical trials. However, structural complexity of cyclic peptides brings extreme challenges for structure elucidation efforts. Isotopic fine structure analysis, Nuclear magnetic resonance (NMR), and detailed tandem mass spectrometry rapidly provided peptide sequence for streptnatamide A, a cyclic peptide isolated from a marine-derived Streptomyces sp. Marfey's analysis determined the stereochemistry of all amino acids, enabling the unambiguous structure determination of this compound. A non-ribosomal peptide synthetase biosynthetic gene cluster (stp) was tentatively identified and annotated for streptnatamide A based on the in silico analysis of whole genome sequencing data. These analytical tools will be powerful tools to overcome the challenges for cyclic peptide structure elucidation and accelerate the development of bioactive cyclic peptides.


Assuntos
Peptídeos Cíclicos , Streptomyces , Peptídeos Cíclicos/química , Streptomyces/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Espectrometria de Massas em Tandem/métodos
3.
MAbs ; 15(1): 2199466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032437

RESUMO

Transition metals can be introduced in therapeutic protein drugs at various steps of the manufacturing process (e.g. manufacturing raw materials, formulation, storage), and can cause a variety of modifications on the protein. These modifications can potentially influence the efficacy, safety, and stability of the therapeutic protein, especially if critical quality attributes (CQAs) are affected. Therefore, it is meaningful to understand the interactions between proteins and metals that can occur during the manufacturing process, formulation, and storage of biotherapeutics. Here, we describe a novel strategy to differentiate between ultra-trace levels of transition metals (cobalt, chromium, copper, iron, and nickel) interacting with therapeutic proteins and free metal in solution in the drug formulation using size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS). Two monoclonal antibodies (mAbs) were coformulated and stored up to nine days in a scaled down model to mimic metal exposure from manufacturing tanks. The samples containing the mAbs were first analyzed by ICP-MS for bulk metal analysis, then studied using SEC-ICP-MS to measure the extent of metal-protein interactions. The SEC separation was used to differentiate metal associated with the mAbs from free metal in solution. Relative quantitation of metal-protein interaction was then calculated using the relative peak areas of protein-associated metal to free metal in solution and weighting it to the total metal concentration in the mixture as measured by bulk metal analysis by ICP-MS. The SEC-ICP-MS method offers an informative means of measuring metal-protein interactions during drug development.


Assuntos
Anticorpos Monoclonais , Metais , Espectrometria de Massas/métodos , Metais/análise , Cobre/análise , Cobre/metabolismo , Ferro
4.
Anal Chim Acta ; 1233: 340490, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283780

RESUMO

Glucuronidation is a common phase II metabolic process for drugs and xenobiotics which increases their solubility for excretion. Acyl glucuronides (glucuronides of carboxylic acids) present concerns as they have been implicated in gastrointestinal toxicity and hepatic failure. Despite the substantial success in the bulk analysis of these species, previous attempts using traditional mass spectrometry imaging (MSI) techniques have completely or partially failed and therefore little is known about their localization in tissues. Herein, we use nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI), an ambient liquid extraction-based ionization technique, as a viable alternative to other MSI techniques to examine the localization of diclofenac, a widely used nonsteroidal anti-inflammatory drug, and its metabolites in mouse kidney and liver tissues. MSI data acquired over a broad m/z range showed low signals of the drug and its metabolites resulting from the low ionization efficiency and substantial signal suppression on the tissue. Significant improvements in the signal-to-noise were obtained using selected ion monitoring (SIM) with m/z windows centered around the low-abundance ions of interest. Using nano-DESI MSI in SIM mode, we observed that diclofenac acyl glucuronide and hydroxydiclofenac are localized to the inner medulla and cortex of the kidney, respectively, which is consistent with the previously reported localization of enzymes that process diclofenac into its respective metabolites. In contrast, a uniform distribution of diclofenac and its metabolites was observed in the liver tissue. Concentration ratios of diclofenac and hydroxydiclofenac calculated from nano-DESI MSI data are generally in agreement to those obtained using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Collectively, our results demonstrate that nano-DESI MSI can be successfully used to image diclofenac and its primary metabolites and derive relative quantitative data from different tissue regions. Our approach will enable a better understanding of metabolic processes associated with diclofenac and other drugs that are difficult to analyze using commercially available MSI platforms.


Assuntos
Diclofenaco , Espectrometria de Massas por Ionização por Electrospray , Animais , Camundongos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Íons , Anti-Inflamatórios
5.
Anal Chim Acta ; 1230: 340395, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36192066

RESUMO

Long-acting parenteral (LAP) implant has garnered the attraction as a drug delivery technique in recent years. Understanding the drug release process is critical for the study of underlying release mechanism. In this paper, we present a novel application of matrix-assisted laser desorption/ionization-mass spectrometry imaging (MADLI-MSI) for the direct visualization of the drug release process from non-conductive polymeric based LAP implants at molecular level. Custom-made sample holders were designed for LAP sample introduction in place of traditional conductive glass slides. The main technical obstacles of applying MALDI-MSI to study non-conductive materials are surface conductivity which can lead to charge build-up. In order to obtain homogeneous imaging of non-conductive sample surfaces, we developed a new sample surface treatment procedure, which is a critical control step to ensure the data reliability and accuracy in understanding kinetics of drug release process of LAP. Overall, this is the first comprehensive report of a sample preparation methodology tailored for imaging LAP at molecular level, allowing for the direct chemical identification and 2D mapping of an active pharmaceutical ingredient (API) distribution during LAP release process. Furthermore, this work has established the foundation to apply MALDI-MSI to the understanding of LAP implant formulation homogeneity, chemical composition, and degradation. More importantly, this work enabled the extension of MALDI-MSI technique to study a wide range of non-conductive materials.


Assuntos
Imagem Molecular , Liberação Controlada de Fármacos , Preparações Farmacêuticas , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Science ; 376(6599): 1321-1327, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709255

RESUMO

The emergence of new therapeutic modalities requires complementary tools for their efficient syntheses. Availability of methodologies for site-selective modification of biomolecules remains a long-standing challenge, given the inherent complexity and the presence of repeating residues that bear functional groups with similar reactivity profiles. We describe a bioconjugation strategy for modification of native peptides relying on high site selectivity conveyed by enzymes. We engineered penicillin G acylases to distinguish among free amino moieties of insulin (two at amino termini and an internal lysine) and manipulate cleavable phenylacetamide groups in a programmable manner to form protected insulin derivatives. This enables selective and specific chemical ligation to synthesize homogeneous bioconjugates, improving yield and purity compared to the existing methods, and generally opens avenues in the functionalization of native proteins to access biological probes or drugs.


Assuntos
Insulina , Penicilina Amidase , Peptídeos , Engenharia de Proteínas , Sequência de Aminoácidos , Humanos , Insulina/análogos & derivados , Insulina/biossíntese , Lisina/química , Penicilina Amidase/química , Penicilina Amidase/genética , Peptídeos/química , Peptídeos/genética , Engenharia de Proteínas/métodos
7.
AAPS J ; 24(3): 52, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35384529

RESUMO

In-clinic dried blood spot (DBS) pharmacokinetic (PK) sampling was incorporated into two phase 3 studies of verubecestat for Alzheimer's disease (EPOCH [NCT01739348] and APECS [NCT01953601]), as a potential alternative to plasma PK sampling for improved logistical feasibility and decreased blood volume burden. However, an interim PK analysis revealed verubecestat concentrations in DBS samples declined with time to assay in both trials. An investigation revealed wide variation in implementation practices for DBS sample handling procedures resulting in insufficient desiccation which caused verubecestat instability. High-resolution mass spectrometry evaluations of stressed and aged verubecestat DBS samples revealed the presence of two hydrolysis degradants. To minimize instability, new DBS handling procedures were implemented that provided additional desiccant and minimized the time to analysis. Both verubecestat hydrolysis products were previously discovered and synthesized during active pharmaceutical ingredient stability characterization. A liquid chromatography-mass spectrometry assay to quantitate the dominant verubecestat degradant in DBS samples was developed and validated. The application of this method to stressed and aged verubecestat DBS samples confirmed that degradant concentrations accounted for the observed decreases in the verubecestat concentration. Furthermore, after increasing desiccant amounts, degradant concentrations accounted for approximately 7% of the verubecestat concentration in DBS clinical samples, indicating that issues with sample handling were minimized with new storage and shipping conditions. This case study illustrates the challenges with employing new sampling techniques in large, global trials, and the importance of anticipating and mitigating implementation risks.


Assuntos
Teste em Amostras de Sangue Seco , Espectrometria de Massas em Tandem , Óxidos S-Cíclicos , Teste em Amostras de Sangue Seco/métodos , Higroscópicos , Manejo de Espécimes , Espectrometria de Massas em Tandem/métodos , Tiadiazinas
8.
J Med Chem ; 65(1): 485-496, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34931831

RESUMO

Inhibitor cystine knot peptides, derived from venom, have evolved to block ion channel function but are often toxic when dosed at pharmacologically relevant levels in vivo. The article describes the design of analogues of ProTx-II that safely display systemic in vivo blocking of Nav1.7, resulting in a latency of response to thermal stimuli in rodents. The new designs achieve a better in vivo profile by improving ion channel selectivity and limiting the ability of the peptides to cause mast cell degranulation. The design rationale, structural modeling, in vitro profiles, and rat tail flick outcomes are disclosed and discussed.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Dor/tratamento farmacológico , Bloqueadores dos Canais de Sódio/síntese química , Bloqueadores dos Canais de Sódio/farmacologia , Venenos de Aranha/síntese química , Animais , Degranulação Celular/efeitos dos fármacos , Cistina/química , Desenho de Fármacos , Temperatura Alta , Mastócitos/efeitos dos fármacos , Modelos Moleculares , Medição da Dor/efeitos dos fármacos , Ratos , Venenos de Aranha/farmacologia
9.
Talanta ; 235: 122725, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517593

RESUMO

Analysis of the spatial distribution of metals, metalloids, and non-metals in biological tissues is of significant interest in the life sciences, helping to illuminate the function and roles these elements play within various biological pathways. Chemical imaging methods are commonly employed to address biological questions and reveal individual spatial distributions of analytes of interest. Elucidation of these spatial distributions can help determine key elemental and molecular information within the respective biological specimens. However, traditionally utilized imaging methods prove challenging for certain biological tissue analysis, especially with respect to applications that require high spatial resolution or depth profiling. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been shown to be effective for direct elemental analysis of solid materials with high levels of precision. In this work, chemical imaging using LA-ICP-MS has been applied as a powerful analytical methodology for the analysis of liver tissue samples. The proposed analytical methodology successfully produced both qualitative and quantitative information regarding specific elemental distributions within images of thin tissue sections with high levels of sensitivity and spatial resolution. The spatial resolution of the analytical methodology was innovatively enhanced, helping to broaden applicability of this technique to applications requiring significantly high spatial resolutions. This information can be used to further understand the role these elements play within biological systems and impacts dysregulation may have.


Assuntos
Terapia a Laser , Fígado , Espectrometria de Massas , Metais , Análise Espectral
10.
Sci Transl Med ; 13(608)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433637

RESUMO

Therapeutic approaches are needed to promote T cell-mediated destruction of poorly immunogenic, "cold" tumors typically associated with minimal response to immune checkpoint blockade (ICB) therapy. Bispecific T cell engager (BiTE) molecules induce redirected lysis of cancer cells by polyclonal T cells and have demonstrated promising clinical activity against solid tumors in some patients. However, little is understood about the key factors that govern clinical responses to these therapies. Using an immunocompetent mouse model expressing a humanized CD3ε chain (huCD3e mice) and BiTE molecules directed against mouse CD19, mouse CLDN18.2, or human EPCAM antigens, we investigated the pharmacokinetic and pharmacodynamic parameters and immune correlates associated with BiTE efficacy across multiple syngeneic solid-tumor models. These studies demonstrated that pretreatment tumor-associated T cell density is a critical determinant of response to BiTE therapy, identified CD8+ T cells as important targets and mediators of BiTE activity, and revealed an antagonistic role for CD4+ T cells in BiTE efficacy. We also identified therapeutic combinations, including ICB and 4-1BB agonism, that synergized with BiTE treatment in poorly T cell-infiltrated, immunotherapy-refractory tumors. In these models, BiTE efficacy was dependent on local expansion of tumor-associated CD8+ T cells, rather than their recruitment from circulation. Our findings highlight the relative contributions of baseline T cell infiltration, local T cell proliferation, and peripheral T cell trafficking for BiTE molecule-mediated efficacy, identify combination strategies capable of overcoming resistance to BiTE therapy, and have clinical relevance for the development of BiTE and other T cell engager therapies.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Animais , Anticorpos Biespecíficos/uso terapêutico , Antígenos CD19 , Complexo CD3 , Linfócitos T CD8-Positivos , Claudinas , Humanos , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico
11.
ACS Pharmacol Transl Sci ; 4(4): 1280-1286, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423265

RESUMO

Several PEGylated therapeutic proteins are approved drugs, and more are under development. However, the synthesis and characterization of these bioconjugates, especially heterogeneous mixtures of PEGylated proteins, are challenging. The present study focuses on the development of PEG linkers that can be installed through biocatalytic route and render much simpler and insightful analytical characterization of PEG-protein conjugates. This linker enables traditional peptide mapping assay to determine protein sequence coverage, natural PTMs, and PEG attachment sites. Novel PEG linkers are cleavable during traditional sample preparation, leaving behind reporter amino acids to allow the determination of PEG attachment sites by peptide mapping. Products of transglutaminase-catalyzed bioconjugation of 5K PEG to Interferon α-2b were analyzed, and K31, K134, and K164 were identified as the PEGylation sites; the former two being newly determined sites demonstrates the sensitivity of the approach. In another instance, conjugation sites on Interleukin-2-PEG conjugation were found to be K31, K47, K48, and K75.

12.
J Pharm Biomed Anal ; 198: 113995, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33706146

RESUMO

Protein conjugation is an effective way to impart different functionalities to the original protein. Conjugation using a native protein (a protein that does not contain special unnatural amino acid for conjugation) typically generates complex mixtures mainly due to the presence of multiple chemically similar competing conjugation sites. It is therefore a challenge to identify products, to optimize the reaction conditions, and to synthesize desired molecules. In order to guide this challenging process, quick and easy analytical methods are in great need for reaction monitoring. An analytical platform was developed for this purpose by using liquid chromatography/high resolution mass spectrometry (LC/HRMS) coupled with a custom-built software tool via Visual Basic for Applications in Excel (VBA). It allows for not only the determination of site-selective modification, but also the evaluation of the scope for possible modification sites. This vendor neutral VBA based software tool combined with enzymatic digestion, especially the SMART Digest™ method, and LC/HRMS would shorten the experimental time and data analysis from days to a few hours. Open-source VBA features a data fitting interface with the support for arbitrary functions and flexible global fits. Two conjugated proteins were used to demonstrate the capability of this VBA tool. Major conjugation sites are presented in a graphic format via its mass and ion intensity and chemists can visually estimate the ratio of modified vs unmodified proteins.


Assuntos
Proteínas , Software , Cromatografia Líquida , Espectrometria de Massas
13.
J Am Soc Mass Spectrom ; 31(12): 2421-2425, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32840373

RESUMO

Spatial characterization of triglyceride metabolism is an area of significant interest which can be enabled by mass spectrometry imaging via recent advances in neutral lipid laser desorption analytical approaches. Here, we extend recent advancements in gold-assisted neutral lipid imaging and demonstrate the potential to map lipid flux in rodents. We address here critical issues surrounding the analytical configuration and interpretation of the data for a group of select triglycerides. Specifically, we examined how the signal intensity and spatial resolution would impact the apparent isotope ratio in a given analyte (which is an important consideration when performing MS based kinetics studies of this kind) with attention given to molecular ions and not fragments. We evaluated the analytics by contrasting lipid flux in well characterized mouse models, including fed vs fed states and different dietary perturbations. In total, the experimental paradigm described here should enable studies of hepatic lipogenesis; presumably, this logic can be enhanced via the inclusion of ion mobility and/or fragmentation. Although this study was carried out in robust models of liver lipogenesis, we expect that the model system could be expanded to a variety of tissues where zonated (or heterogeneous) lipid synthesis may occur, including solid tumor metabolism.


Assuntos
Lipídeos/análise , Animais , Ouro/análise , Cinética , Masculino , Espectrometria de Massas/métodos , Camundongos Endogâmicos C57BL
14.
Anal Chim Acta ; 1125: 279-287, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32674774

RESUMO

Peptides have become a fast-growing segment of the pharmaceutical industry over the past few decades. It is essential to develop cutting edge analytical techniques to support the discovery and development of peptide therapeutics, especially to examine their absorption, distribution, metabolism and excretion (ADME) properties. Herein, we utilized two label-free mass spectrometry (MS) based techniques to investigate representative challenges in developing therapeutic peptides, such as tissue distribution, metabolic stability and clearance. A tool proof-of-concept cyclic peptide, melanotan II, was used in this study. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which is a well-developed label-free imaging technique, was used to map the detailed molecular distribution of melanotan II and its metabolites. Droplet-based liquid microjunction surface sampling liquid chromatography-high resolution mass spectrometry (LMJ-SSP-LC-HRMS) was used in combination with MALDI-MSI to rapidly profile molecular information and provide structural insights on drug and metabolites. Using both techniques in parallel allowed a more comprehensive and complementary data set than using either technique independently. We envision MALDI-MSI and droplet-based LMJ-SSP-LC-HRMS, which can be used in combination or as standalone techniques, to become valuable tools for assessing the in vivo fate of peptide therapeutics in support of drug discovery and development.


Assuntos
Peptídeos Cíclicos/análise , alfa-MSH/análogos & derivados , Animais , Masculino , Metaboloma , Camundongos , Peptídeos Cíclicos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Distribuição Tecidual , alfa-MSH/análise , alfa-MSH/metabolismo
15.
Org Lett ; 21(11): 4210-4214, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31117712

RESUMO

Synthetic diazeniumdiolate (DAZD)-based nitric oxide is utilized to modulate the nitric oxide (NO) concentration in cellular environments and to control physiological processes, yet chemists are still struggling to find efficient and scalable methodologies that will enable them to access sufficient quantities of the high-energy diazeniumdiolate intermediates for biological studies. Now, a general, scalable, safer, and high-yielding new methodology adaptable to the large-scale synthesis of DAZDs has been developed.

16.
Clin Cancer Res ; 25(13): 3921-3933, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30918018

RESUMO

PURPOSE: Despite advances in the treatment of multiple myeloma, new therapies are needed to induce more profound clinical responses. T-cell-redirected lysis triggered by bispecific antibodies recruiting T cells to cancer cells is a clinically validated mechanism of action against hematologic malignancies and CD38 is a tumor-associated antigen with near-universal expression in multiple myeloma. Thus, an anti-CD38/CD3 bispecific T-cell-recruiting antibody has the potential to be an effective new therapeutic for multiple myeloma. EXPERIMENTAL DESIGN: Anti-CD38/CD3 XmAb T-cell-recruiting antibodies with different affinities for CD38 and CD3 were assessed in vitro and in vivo for their redirected T-cell lysis activity against cancer cell lines, their lower levels of cytokine release, and their potency in the presence of high levels of soluble CD38. Select candidates were further tested in cynomolgus monkeys for B-cell depletion and cytokine release properties. RESULTS: AMG 424 was selected on the basis of its ability to kill cancer cells expressing high and low levels of CD38 in vitro and trigger T-cell proliferation, but with attenuated cytokine release. In vivo, AMG 424 induces tumor growth inhibition in bone marrow-invasive mouse cancer models and the depletion of peripheral B cells in cynomolgus monkeys, without triggering excessive cytokine release. The activity of AMG 424 against normal immune cells expressing CD38 is also presented. CONCLUSIONS: These findings support the clinical development of AMG 424, an affinity-optimized T-cell-recruiting antibody with the potential to elicit significant clinical activity in patients with multiple myeloma.


Assuntos
Anticorpos Biespecíficos/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos Imunológicos/uso terapêutico , Citocinas/biossíntese , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/efeitos adversos , Afinidade de Anticorpos/imunologia , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Complexo CD3/antagonistas & inibidores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Ativação Linfocitária/imunologia , Macaca fascicularis , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Linfócitos T/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Anal Chem ; 91(7): 4381-4387, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30786210

RESUMO

Isomeric amino acid residues such as valine (Val) and norvaline (Nva) are common in recombinant proteins. The mis-incorporation of Nva for leucine (Leu) causes heterogeneity and in some cases even toxicity. Previous studies have shown that hot electron capture dissociation (HECD) is able to differentiate Val from Nva by producing diagnostic w ions on custom designed synthetic model peptides. To broaden the utilization of HECD in proteomic studies and to define the critical structural features, a thorough investigation was performed on representative peptides including specifically designed synthetic peptides as well as biological peptides bearing tryptic digest-like features and peptides with post-translational modifications. Experimental evidence confirmed that the formation of a w ion is directly dependent upon the presence of the corresponding z ion. The results suggested that a charge carrier residue at the C-terminus is promoting the formation of diagnostic w ions for Nva. Thus, peptides resulting from trypsin digestion, with arginine (Arg) or lysine (Lys) at the C-terminus, can be analyzed using the HECD method. Post-translational modification (PTM) such as phosphorylation did not prevent the generation of the requisite side chain fragmentation w ions. These results suggest the general applicability of HECD for unambiguous identification of Val and Nva especially in structure characterization of therapeutic proteins.


Assuntos
Peptídeos/análise , Valina/análogos & derivados , Valina/química , Sequência de Aminoácidos , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos
18.
Chem Sci ; 9(17): 4168-4175, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29780547

RESUMO

Two radical-based approaches have been developed to effect the trifluoromethylation of aryl C-H bonds in native peptides either using stoichiometric oxidant or visible light photoredox catalysis. The reported methods are able to derivatize tyrosine and tryptophan sidechains under biocompatible conditions, and a number of examples are reported involving fully unprotected peptides with up to 51 amino acids. The development of this chemistry adds to the growing array of chemical methods for selectively modifying amino acid residues in the context of complex peptides. The direct incorporation of trifluoromethyl groups into biopolymers enables the study of a range of biological and biochemical systems, and preliminary results indicate this method can be extended to the incorporation of other fluoroalkyl groups for bioconjugation applications.

19.
J Am Soc Mass Spectrom ; 29(5): 903-912, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29372552

RESUMO

Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. Graphical Abstract ᅟ.


Assuntos
Dissulfetos/análise , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Algoritmos , Sequência de Aminoácidos , Animais , Análise de Dados , Humanos , Insulina/química , Neuropeptídeos/química , Software , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...